The Ins and Outs of Test Requisition Forms

The content provided herein is for background and educational purposes only. The material is for your sole use and may not be altered or further disseminated in any fashion for further use.

PRECISION MEDICINE ESSENTIALS

Oncogenic Drivers^{1,2}

Driver mutations are genomic alterations that directly or indirectly provide a selective advantage to cancer cells by promoting cancer growth, development, and/or survival

Driver Alteration	Driver Gene
A mutation that directly or indirectly confers a selective growth advantage to the cell in which it occurs	A gene that contains driver gene mutations or is expressed aberrantly in a fashion that confers a selective growth advantage
Not every mutation in an oncogene or tumor suppressor gene is a driver mutation.	Passenger mutations have no direct or indirect effect on the selective growth advantage of the cell in which it occurred.

Drivers Arise From Specific Genomic Alterations^{1,2}

Mutations	
Single-Nucleotide Variation	The substitution of one DNA nucleotide for another nucleotide (may be somatic/ germline and synonymous/nonsynonymous)
	Includes missense mutations , which result in the substitution of the wild-type amino acid for an alternate amino acid and silent mutations , which do not alter the encoded amino acid
Indel/Deletion-Insertion	The replacement of more than one nucleotide by other nucleotides
	May be " in-frame " if the deletion/insertion occurs in multiples of three nucleotides or " frameshift " if the deletion/insertion shifts the reading frame, resulting in novel amino acids
Splice Site	A mutation involving the conserved nucleotides at the exon-intron boundary that may disrupt RNA splicing
	May result in exon skipping, intron retention, frameshift, and premature protein truncation
Extension	The normal stop codon is lost, allowing translation to continue
Truncating/Nonsense	A premature stop codon is introduced
Structural Variants	

Copy Number Variation	A deviation from the expected two copies of a gene via an increase (amplification) or decrease (deletion) in the number of copies
Translocation	A rearrangement in which regions from two nonhomologous chromosomes are joined
Fusion	A novel gene product created from two previously separate and independent genes
	May arise from chromosomal translocations, interstitial deletions, inversions, or tandem duplications

Testing Essentials

DETECTING GENOMIC ALTERATIONS

Biomarker Testing in Oncology Is Complex^{1,3}

As of June 2022, there are:

Single-Gene Testing

IHC: A test that uses an antibody to detect the expression, or loss of expression, of a specific protein or mutated protein form

Can assess: Protein expression

FISH: An assay using a DNA probe that typically binds to target sequences in chromosome DNA; assessed under a fluorescence microscope

Can assess: Rearrangements, CNVs

RT-PCR: An assay that amplifies and measures DNA from extracted RNA *Can assess: SNVs, indels, known rearrangements*

Multigene Testing

NGS^a: A technology that performs massively parallel DNA sequencing to detect genomic alterations

Can assess: SNVs, indels, rearrangements, CNVs

^aGenomic alterations and biomarkers tested will vary by assay.

3

UNDERSTANDING NGS

NGS Assays Are Not Identical⁵⁻⁹

Enrichment Strate	gy ^{1,7,9,10}		
		Amplicon	Hybrid capture
	SNVs, small indels		\checkmark
Variant detection	Fusions/ rearrangements	Nucleic acid dependent	\checkmark
	Exon skipping	Nucleic acid dependent	\checkmark
	CNV		\checkmark
Bioinformatic analysis com	plexity	Less	More
Nucleic acid requirements		>10 ng	>100-200 ng

Nucleic Acid Selection

RNA-based NGS may be more sensitive than DNA-based NGS in detecting fusions and exon skipping^{1,9,11-13}

Understanding assay limitations is critical to identifying patients with actionable biomarkers¹

Recommendations for NGS¹

ASCO recommends multigene panel-based genomic testing or NGS for:

	Patients eligible for an approved genomic biomarker–linked therapy	Patients eligible for >1 approved genomic biomarker-linked therapy
	 To detect tumor-agnostic actionable biomarkers like dMMR and/or MSI-H, TMB-H, and NTRK fusions, which may not be detected by single-gene tests 	 To provide the most efficient use of limited tumor biopsy tissue
/		

ASCO recommends using NGS for the most efficient utilization of limited biopsy tissue; it may allow simultaneous testing for multiple approved targeted therapies

4

UNDERSTANDING TESTING TERMS

Establishing Common Testing Terminology

Specialty-specific definitions for jargon may impact MDT communication and coordination. Establishing a common language, as below, with the MDT may help ensure that patients are not missed because of communication errors.

GENERAL

Biomarker panel^{14,1}

- Tests a defined/ prespecified set of biomarkers, ranging from a few to hundreds
- Technology used may be NGS, microarrays, or a collection of single-gene tests

NGS^{14,16}

"Next generation sequencing"

A methodology capable of:

- Whole genome sequencing
- Whole exome sequencing
- Detecting mutations in a small panel of prespecified genes
- Enrichment strategy (amplicon or hybrid capture) and assay design impacts the detection of some genomic alterations

SPECIFIC

CGP¹⁷

"Comprehensive genomic profiling"

- A hybrid capture-based NGS assay that typically tests 50+ genes simultaneously
- CGP assays may detect all types of genomic alterations

Additional Terms Explained

TEST REQUISITION FORMS (TRFs)

TRFs serve as a primary mode of communication between clinical and pathology team members during biomarker ordering^{21,22}

of HCPs reported communication breakdowns during biomarker test ordering^{23,*}

Common TRF Roadblocks

Confusion may result from:

- Too many testing options (eg, multiple testing platforms or vendors, each with unique sample requirements)²⁴
- Requisition form variability between different institutions/ reference labs²²

• Data entry errors are more common with handwritten compared to electronic forms²⁷

Under- or Overtesting

Format of TRF may impact test utilization, resulting in potential under- or overtesting^{28,29}

· Overtesting or inappropriate testing arises when testing exceeds guideline-recommended testing

*The Association of Community Cancer Centers, the Association of Molecular Pathology, the American Society for Clinical Pathology, and CAP conducted a survey in June 2018 with 659 responses from a multidisciplinary group and different cancer program settings.

THE IMPORTANCE OF TRF LAYOUT

TRF format and layout vary between institutions and can impact ordering, information processing, and results^{22,30}

Considerations

Multiple professional societies have developed resources to assist with testing barriers:

Keep Forms Up-to-Date

by incorporating multiple guidelines; frequently updated guidelines may be the source for updates to internal SOPs²⁴

Consider reviewing and incorporating recommendations from different guidelines at a cadence that keeps pace with updates²⁴

Introduction to Hypothetical TRFs

In the next section, 1 hypothetical TRFs is reviewed. This form provides a way to highlight important components of TRFs and details to consider including. In practice, TRFs should be carefully designed to maximize clear communication between members of the MDT.

The form in the following section is purely hypothetical, includes guideline recommendations, and is not intended to be used in practice

HYPOTHETICAL TRF BASIC INFORMATION

	Basic Informa	ation		
Patient Information				
Medical Record #	Name	Sex	DOB	
Address	_ Phone Number			
Clinical Information				
Diagnosis / Diagnosis Co	de D	isease Stage		
Number of Prior Therapie	S			
Original Activating Mutati	on Reaso	n for Testing		
Attachments: Pertiner	It Laboratory Results 🗌	Test results from me	olecular assays	
Physician Information				
Requisition Completion D	ate Complete	d By		
Address (results will be s	ent to this address)			
Ordering Physician Name	NPI #	Phone/Fax		
Treating Physician Name NPI # Phone/Fax				
Authorizing Physician Sig	nature			
Referring Pathologist Nar	ne NPI #	Phone/Fax		
Specimen Information				
Specimen ID	Specimen Type	Block ID		
Site of Biopsy	Primary or Metas	tasis		
Collection Date and Time	Retr	ieved Date		
Fixation Method	Fixation Duration			
Billing Information				
Bill to: Insurance	edicare 🗌 Medicaid 🗌 Pa	itient Self Pay Dire	ect Bill Other	
Insurance Information				

This form is purely hypothetical and is not intended to be used in practice; content is based on guideline-recommended testing

DOB, date of birth; NPI, national provider identifier.

HYPOTHETICAL TRF EXPLAINED BASIC INFORMATION

Patient Information lists basic identifying information for the patient

Clinical Information provides details on the disease, stage, and clinical history of the patient

Disease stage and number of prior therapies are important details for the pathology team, as these may impact mutation status³⁴⁻³⁶

The ability to include attachments of prior pathology results allows pathologists to see the most relevant and up-to-date information that may impact patient care³⁷

Physician Information provides relevant contact information and a mailing address for results

Specimen Information communicates details about the specimen submitted for testing

Fixation method and duration are important to note, as these factors may impact biomarker testing results^{38,39}

Test Requisition Form
Basic Information
Patient Information
Medical Record # Name Sex DOB
Address Phone Number
Clinical Information
Diagnosis / Diagnosis Code Disease Stage
Number of Prior Theranies
Original Activating Mutation Reason for Testing
Attachments: Pertinent Laboratory Results Test results from molecular assays
Physician Information
Requisition Completion Date Completed By
Address (results will be sent to this address)
Ordering Physician Name NPI # Phone/Fax
Treating Physician Name NPI # Phone/Fax
Authorizing Physician Signature
Referring Pathologist Name NPI # Phone/Fax
Specimen Information
Specimen ID Specimen Type Block ID
Site of Bionsy Primary or Metastasis
Collection Date and Time Retrieved Date
Fixation Method Fixation Duration
Billing Information
Bill to: Insurance Medicare Medicaid Patient Self Pay Direct Bill Other
, ,
Billing contact information
Specimen Origin: 🗌 Hospital In-Patient 🗌 Hospital Out-Patient 🔲 Non-Hospital Patient
Billing Information provides important details for billing
or the testing

Specimen origin and date of collection may affect insurance coverage, particularly with Medicare^{40,41}

HYPOTHETICAL TRF TEST SELECTION

Test Requisition Form

Fasturad	Oncol	oav	Tecting
reatureu	Olicol	logy	resung

Cell-Free DNA (cfDNA)

- Single gene test 1
- Single gene test 2
- Panel test 1 (list number of genes included)

Replicate fields to reflect all cfDNA testing options available at your institution

Pan Tumor Marker 1

Marker by PCR

□ IHC for protein X

Pan Tumor Marker 2

□ Marker 2 fusion hotspot panel

□ Marker 2 pan-protein IHC

Programmed Death-Ligand 1 (PD-L1)

PD-L1 antibody 1 IHC

PD-L1 antibody 2 IHC

Other PD-L1 antibody IHC

Can replicate fields to reflect current number of antibodies available

Solid Tumor NGS Panel*

□ 359-gene hybrid capture NGS panel

DNA-based assay including all pan tumor markers including TMB as well as actionable markers in multiple disease states. Please see second page for full gene list.

Tumor-Specific Panels and Profiles*,†

⁺Profile options include all biomarkers linked to FDA-approved or contraindicated therapies, by tumor type (current as of June 2022).

Melanoma NGS panel

50 gene hotspot NGS panel; includes all NCCN-recommended biomarkers

Lung NGS panel

121 gene hybrid capture DNA NGS panel; includes all NCCN-recommended biomarkers (current as of January 2022)

Reflex to 15 gene hotspot assay if insufficient DNA for larger panel

Replicate fields to reflect all reflex testing options at your institution.

Breast profile

PCR and IHC; includes all NCCN-recommended biomarkers (current as of January 2022)

□ Reflex to FISH if HER equivocal

Replicate fields to reflect all reflex testing options at your institution.

Colon profile

PCR and IHC; includes all NCCN-recommended biomarkers except TMB (current as of January 2022)

□ Reflex to FISH if IHC is unclear

Replicate fields to reflect all reflex testing options at your institution.

Replicate fields to reflect all reflex panels and profile testing options at your institution. *For full gene list, see appendix.

	Tumo	r-Specific Panels	s and Profiles*,*		
🗆 ATM	BARD1	□ BRAF	BRCA1	BRCA2	
BRIP1	CDK12	CHEK1	CHEK2	□ EGFR	

This form is purely hypothetical and is not intended to be used in practice; content is based on guideline-recommended testing

HYPOTHETICAL TRF EXPLAINED TEST SELECTION

Featured Oncology Testing provides tests that inform the use of tumor agnostic therapeutics

cfDNA: cfDNA can be used in single gene testing or in panel testing.

All available options should be clearly listed. Reflex testing to tissue testing may be included in the order42,43

PD-L1: PD-L1 antibodies are associated with specific therapies and are not interchangeable.44,45 Forms should list available options and, potentially, the

associated therapy

Pan-tumor markers:

Pan-tumor markers can be detected with multiple different methods. Each pan-tumor marker and the method(s)

may be listed.¹

When different isoforms of the same gene function as the same biomarker, consider clarifying if the method can assess 1 isoform or all isoforms.46,47

Solid tumor NGS panel: Because the ability to detect fusions in an NGS assay is impacted by the genes tested, nucleic acid input, and enrichment strategy, all pieces of information may be listed on the form.^{1,31} Additionally, if the assay can detect TMB, it may also be explicitly stated. It is important to remember that TMB, which refers to the number of somatic mutations per megabase of DNA

sequenced, can be influenced by the size of the panel, or assay coverage. The benchmark method to measure TMB is whole-exome sequencing. However, multigene panel-based sequencing with fewer genes (324-595 genes) can be used. Smaller panels cannot accurately estimate TMB¹

Finally, if using an outside vendor, consider including the name of the vendor along with aforementioned information.

HYPOTHETICAL TRF TEST SELECTION

Test Requisition Form

Featured	Onco	v nol	Testina
i caturcu	Onco	iugy	resung

Cell-Free DNA (cfDNA)

- Single gene test 1
- Single gene test 2
- Panel test 1 (list number of genes included)

Replicate fields to reflect all cfDNA testing options available at your institution

Pan Tumor Marker 1

Marker by PCR

□ IHC for protein X

Pan Tumor Marker 2

□ Marker 2 fusion hotspot panel

□ Marker 2 pan-protein IHC

Programmed Death-Ligand 1 (PD-L1)

DPD-L1 antibody 1 IHC

PD-L1 antibody 2 IHC

Other PD-L1 antibody IHC

Can replicate fields to reflect current number of antibodies available

Solid Tumor NGS Panel*

□ 359-gene hybrid capture NGS panel

DNA-based assay including all pan tumor markers including TMB as well as actionable markers in multiple disease states. Please see second page for full gene list.

Tumor-Specific Panels and Profiles*,†

⁺Profile options include all biomarkers linked to FDA-approved or contraindicated therapies, by tumor type (current as of June 2022).

Melanoma NGS panel

50 gene hotspot NGS panel; includes all NCCN recommended biomarkers

Lung NGS panel

121 gene hybrid capture DNA NGS panel; includes all NCCN recommended biomarkers (current as of January 2022)

Reflex to 15 gene hotspot assay if insufficient DNA for larger panel

Replicate fields to reflect all reflex testing options at your institution.

Breast profile

PCR and IHC; includes all NCCN recommended biomarkers (current as of January 2022)

□ Reflex to FISH if HER equivocal

Replicate fields to reflect all reflex testing options at your institution.

Colon profile

PCR and IHC; includes all NCCN recommended biomarkers except TMB. (current as of January 2022)

□ Reflex to FISH if IHC is unclear

Replicate fields to reflect all reflex testing options at your institution.

Replicate fields to reflect all reflex panels and profile testing options at your institution. *For full gene list, see appendix.

	Tumo	r-Specific Panels	and Profiles*,*		
	BARD1	□ BRAF	BRCA1	BRCA2	
BRIP1	CDK12		CHEK2		

This form is purely hypothetical and is not intended to be used in practice; content is based on guideline-recommended testing

HYPOTHETICAL TRF EXPLAINED TEST SELECTION

Tumor-Specific Panels and Profiles: Tumor specific panels and profiles allow physicians

to assess a group of select biomarkers and genes that are relevant to different tumor types.

To minimize confusion among providers, consider implementing ASCO definitions in forms (eg, a panel is an NGS assay of at least 50 genes)¹

Reflex testing can improve turnaround time by streamlining the ordering process. Incorporating

it on the form provides ordering physicians the ability to select the most appropriate option for their patient.^{7,48}

Description of

assays: Biomarkers are constantly being added across disease

states⁴⁹; staying current is a wellestablished challenge.²⁴ Guideline recommendations can help practitioners stay current, but it is important to remember that guidelines may not reflect the most recent evidence, as advances may have occurred after a publication or update.^{24,50} Therefore, incorporating details on guideline recommendations (and the associated guideline date) provides important context for the assay's clinical relevance. Complete gene lists may accompany TRFs on subsequent pages.²⁴

Test Requisition Form

Cell-Free DNA (cfDNA)

Single gene test 1

Single gene test 2

Pan Tumor Marker 1

□ Marker by PCR

□ IHC for protein X

Pan Tumor Marker 2

Marker 2 fusion hotspot panel

Marker 2 pan-protein IHC

□ Panel test 1 (list number of genes included)

Replicate fields to reflect all cfDNA testing options available at your institution

Featured Oncology Testing

Programmed Death-Ligand 1 (PD-L1)

🗌 PD-L1 Antibody 1 IHC

PD-L1 Antibody 2 IHC

□ Other PD-L1 antibody IHC

Can replicate fields to reflect current number of antibodies available

Solid Tumor NGS Panel

359-gene hybrid capture NGS panel DNA-based assay including all pan tumor markers including TMB as well as actionable markers in multiple disease states. Please see second page for full gene list.

Tumor-Specific Panels and Profiles**

*Profile options include all biomarkers linked to FDA-approved or contraindicated therapies, by tumor type (current as of June 2022)

🗌 Melanoma NGS panel

50 gene hotspot NGS panel; Includes all NCCN recommended biomarkers

🗌 Lung NGS panel

121 gene hybrid capture DNA NGS panel; Includes all NCCN recommended biomarkers (current as of January 2022)

□ Reflex to 15 gene hotspot assay if insufficient DNA for larger panel

Replicate fields to reflect all reflex testing options at your institution.

🗋 Breast profile

PCR and IHC; Includes all NCCN recommended biomarkers (current as of January 2022).

□ Reflex to FISH if HER equivocal

Replicate fields to reflect all reflex testing options at your institution.

🗌 Colon profile

PCR and IHC; Includes all NCCN recommended biomarkers except TMB. (current as of January 2022).

□ Reflex to FISH if IHC is unclear Replicate fields to reflect all reflex testing options at your institution.

Replicate fields to reflect all reflex panels and profile testing options at your institution *For full gene list, see appendix

	· Tumor-S	pecific Panels a	and Profiles**	
🗆 ATM	BARD1	□ BRAF	BRCA1	BRCA2
BRIP1	CDK12	CHEK1	CHEK2	EGFR

Single Gene Testing Options allow for the customized selection of individual genes of interest that may not be included in tumor-specific panels or profiles.

13

Pathology Reports

PATHOLOGY REPORTS

The report is an essential part of the testing process. Incomplete, unclear, or missing reports can lead to incorrect patient management⁵¹

Electronic Record Compatibility

While pathologists may rely on a laboratory information system (LIS), clinicians routinely use the electronic health record (EHR).

Interoperability of these systems varies across institutions⁵²

Joint consensus from ASCO, CAP, and AMP⁵¹: Pathology reports should be in a format that enables integration with the electronic health record

Common Reporting Pitfalls and Solutions

Reports are Lost / Missing in the EHR^{24,53,54}:

- Reports may not be fully integrated into EHRs because of a lack of compatibility between LIS and EHR
- Pages may be lost when reports are scanned in the EHR

ACCC-Recommended Solutions⁵⁴:

- Utilizing CAP electronic Cancer Checklists to facilitate structured data capture and reporting
- Exploring ways to improve report readability and searchability across electronic systems
- Minimizing the use of scanned reports
- Considering using pathology LIS modules built by the inpatient EHR vendor

Multiple Reports are Generated at Different Times⁵²:

 Confusion may result when several individual reports are created for each specimen or test ordered for a single patient

CAP-Recommended Solutions:

· Provide a single, comprehensive report

Pathology Reports

Addendum Reports⁵⁴

Biomarker test reports are

often added as an addendum

ASCO recommends using precision oncology knowledge databases to assess a list of genomic alterations considered clinically actionable¹

Difficult to interpret or "lost" reports may lead to patients not receiving biomarker-informed care²⁴

15

- report may be actionable
- Not every mutation in a driver gene is actionable

CAP-Recommended Solutions⁵²:

- · Link the final pathology report to all subsequent addendum reports in the EHR
- When issuing the final report, pathologists should indicate that an addendum report is
- Utilize electronic notifications to alert clinicians that an addendum report has been entered into
- · Optimize the use of optical character recognition software to allow clinicians to search scanned reports using keywords

- Use headlines to emphasize key findings
- Use clear and unambiguous nomenclature
- Provide patient management options, when possible, based on evidence

ASCO-Recommended Solutions:

GENETIC REPORTS

Genomic Alterations: Drivers vs. variants of unknown significance (VUS)

Not every mutation in an oncogene or tumor suppressor gene is a driver mutation¹

For example, the driver gene BRAF (shown below) may contain mutations that are considered driver alterations (*black*) or alterations not associated with oncogenesis (*gray*)⁵⁹

If a patient is positive for an alteration, it is important to determine whether the alteration is clinically meaningful⁵¹

Categorizing Genomic Alterations⁵¹**:** A joint consensus from ASCO, CAP, and AMP

Alterations are categorized into four categories based on their clinical impact:

TIER I Variants of Strong Clinical Significance	TIER II Variants of Potential Clinical Significance	TIER III Variants of Unknown Clinical Significance	TIER IV Benign or Likely Benign Variants
Therapeutic, prognostic & diagnostic	Therapeutic, prognostic & diagnostic		
Level A Evidence	Level C Evidence FDA-approved therapies for different tumor types of investigational therapies Multiple small published studies with some consensus	Not observed at a significant allele frequency in the general or specific subpopulation databases, or pan- cancer or tumor-specific variance databases No convincing published evidence of cancer	Observed at significant allele frequency in the general or specific subpopulation databases
FDA-approved therapy			
Included in professional			
guidelines			No existing published evidence of cancer association
Level B Evidence			
Well-powered studies with consensus from			
experts in the field	Level D Evidence	association	
	Pre-clinical trials or a few case reports without consensus		

Joint consensus from ASCO, CAP, and AMP⁵¹:

Only tier I–III alterations should be included within a report; these should be listed in descending order of clinical importance

Databases Help Distinguish Actionable Driver Alterations

Several publicly available knowledge bases maintain up-to-date records that list driver alterations targeted by FDA-approved therapies. These include^{1,60}:

The Memorial Sloan Kettering Cancer Center (MSK) OncoKB	MD Anderson Precision Oncology Decision Support (PODS)	The Catalogue of Somatic Mutations in Cancer (COSMIC)
--	--	--

The Impact of Variant Allele Frequency (VAF)

VAF corresponds to the proportion of genetic sequencing reads that harbor a specific allelic variant. VAF may be an indicator of the proportion of tumor cells that carry the variant.^{1,61}

Somatic mutations generally have a VAF < 50% due to contaminating normal tissue. A VAF of \sim 50% or 100% may indicate a potential germline mutation⁵¹

Consider consulting a molecular tumor board (MTB) when needed.62

82 patients with solid tumors tested with NGS in a tertiary care center suggests that MTBs may help in appropriate and actionable clinical decision-making⁶³

Joint consensus from ASCO, CAP, and AMP⁵¹:

VAF should be included in the report when appropriate⁵¹

Summary

Joint Consensus from ASCO, CAP, and AMP on Reporting Genetic Variants⁵¹

Classify alterations into tiers based on clinical impact

· Only include tier I-III alterations in the report

Provide a list of tested genes, including only those that were capable of being fully analyzed by assay used

Prioritize clear communication

Standard nomenclature should be used, in addition to colloquial nomenclature as needed, to convey meaning with clarity

Include relevant negative findings

· For tier I variants, pertinent negative results should be reported

Detail the clinical significance of detected variants

For tier I and II variants, provide interpretive comments with clinicopathologic context to inform
management decisions

GLOSSARY

ACCC, ASSOCIATION OF COMMUNITY CANCER CENTERS

AMP, ASSOCIATION FOR MOLECULAR PATHOLOGY

ASCO, AMERICAN SOCIETY OF CLINICAL ONCOLOGY

BRAF, V-RAF MURINE SARCOMA VIRAL ONCOGENE HOMOLOG B1

CAP, COLLEGE OF AMERICAN PATHOLOGISTS

CNV, COPY NUMBER VARIATION

EHR, ELECTRONIC HEALTH RECORD

FDA, U.S. FOOD AND DRUG ADMINISTRATION

FISH, FLUORESCENCE IN-SITU HYBRIDIZATION

IHC, IMMUNOHISTOCHEMISTRY

LIS, LABORATORY INFORMATION SYSTEM

MDT, MULTIDISCIPLINARY TEAM

NGS, NEXT-GENERATION SEQUENCING

RT-PCR, REVERSE TRANSCRIPTION POLYMERASE CHAIN REACTION

SNV, SINGLE NUCLEOTIDE VARIANT

TRF, TEST REQUISITION FORM

VAF, VARIANT ALLELE FREQUENCY

REFERENCES

1. Chakravarty D et al. J Clin Oncol. 2022;40(11):1231-1258. 2. Vogelstein B et al. Science. 2013;339(6127):1546-1558. 3. OncoKB. https://www.oncokb.org/ actionableGenes#levels=1§ions=Tx. Accessed June 13, 2022. 4. National Cancer Institute. https://www.cancer.gov/publications/dictionaries/cancerterms/def/rt-pcr. Accessed July 15, 2022. 5. Yu TM et al. Clin Lung Cancer. 2019;20(1):20-29.e8. 6. Foundation Medicine, Inc. https://assets.ctfassets.net/ w98cd481qyp0/41rlj28gFwtxCwHQxopaEb/fba378cd309082f09570f32fc16b5d01/FoundationOne_CDx_Label_Technical_Info.pdf. Accessed January 17, 2022. 7. Pennell NA et al. Am Soc Clin Oncol Educ Book. 2019;39:531-542. 8. Church AJ. Next-generation sequencing. In: Tafe L, Arcila M, eds. Genomic Medicine. Cham, Switzerland: Springer; 2020:25-40. 9. Jennings L et al. J Mol Diagn. 2017;19(3):341-365. 10. Bubendorf L et al. Eur Respir Rev. 2017;26(144):170007. 11. Benayed R et al. Clin Cancer Res. 2019;25(15):4712-4722. 12. Haynes BC et al. Transl Oncol. 2019;12(6):836-845. 13. Marco-Puche G et al. Front Genet. 2019;10:1152. 14. Malone ER et al. Genome Med. 2020;12(1):8. **15**. American Cancer Society Cancer Action Network. https://www.fightcancer.org/sites/default/files/Improving%20Access%20to%20 Biomarker%20Testing_FINAL.pdf. Accessed December 1, 2021. **16**. Samorodnitsky E et al. *Hum Mutat*. 2015;36(9):903-914. **17**. Illumina. https://www.illumina. com/areas-of-interest/cancer/clinical-cancer-research/cgp.html. Accessed December 1, 2021. 18. National Cancer Institute. https://www.cancer.gov/publications/ dictionaries/cancer-terms/def/genetic-profile. Accessed July 15, 2022. 19. US Food and Drug Administration. https://www.fda.gov/medical-devices/in-vitro- diagnostics/list-cleared-or-approved-companion-diagnostic-devices-in-vitro-and-imaging-tools. Accessed July 15, 2022. 20. US Food and Drug Administration.
 https://www.fda.gov/medical-devices/in-vitro-diagnostic-devices-in-vitro-and-imaging-tools. Accessed July 15, 2022. 20. US Food and Drug Administration.
 https://www.fda.gov/medical-devices/in-vitro-diagnostic-levices/in-vitro-and-imaging-tools. Accessed July 15, 2022. 20. US Food and Drug Administration.
 https://www.fda.gov/medical-devices/in-vitro-diagnostic-levices/laboratory-developed-tests. Accessed July 15, 2022. 21. Comfere NI et al. *J Cutan Pathol.* 2015;42(5):333-345.
 Lubin IM et al. *J Mol Diagn.* 2008;10(5):459-468.
 Plotkin E at al. *J Clin Oncol.* 2019;37(suppl 27):49.
 Committee on Policy Issues in the Clinical Development and Use of Biomarkers for Molecularly Targeted Therapies; Board on Health Care Services; Institute of Medicine; National Academies of Sciences, Engineering, and the table of Biomarkers for Molecularly Targeted Therapies; Board on Health Care Services; Institute of Medicine; National Academies of Sciences, Engineering, and the table of Biomarkers for Molecularly Targeted Therapies; Board on Health Care Services; Institute of Medicine; National Academies of Sciences, Engineering, and the table of Biomarkers for Molecularly Targeted Therapies; Board on Health Care Services; Institute of Medicine; National Academies of Sciences, Engineering, and tables of Biomarkers for Molecularly Targeted Therapies; Board on Health Care Services; Institute of Medicine; National Academies of Sciences, Engineering, and tables of Biomarkers for Molecularly Targeted Therapies; Board on Health Care Services; Institute of Medicine; August Academies of Sciences, Engineering, and tables of Sciences, Engineering, and Sciences, Enginee Medicine. Biomarker Tests for Molecularly Targeted Therapies: Key to Unlocking Precision Medicine. Graig LA, Phillips JK, Moses HL, eds. Washington (DC): National Academies Press (US); 2016. 25. Agarwal R et al. Indian J Clin Biochem. 2012;27(1):61-68. 26. Burnett L et al. Ann Clin Biochem. 2004;41(Pt 1):53-56. 27. Hill PM et al. Ann Emerg Med. 2010;56(6):630-636. 28. Rubinstein M et al. Am J Clin Pathol. 2018;149:197-221. 29. Bailey J et al. J Clin Pathol. 2005;58:853-855. 30. Morales A et al. J Mol Diagn. 2021;23(5):589-598. 31. Lindeman NI et al. Arch Pathol Lab Med. 2018;142(3):321-346. 32. El-Deiry WS et al. CA Cancer J Clin. 2019;69(4):305-343. 33. Martin NA et al. JCO Precis Oncol. 2021;5:PO.21.00027. 34. Cree IA et al. J Clin Pathol. 2014;67(11):923-931. 35. Cheng L et al. Mod Pathol. 2018;31(1):24-38.
 36. de Bruin EC et al. Science. 2014;346(6206):251-256. 37. Dufraing K et al. BMC Cancer. 2022;22(1):736. 38. Nietner T et al. Virchows Arch. 2012;461(3):259-269.
 39. Werner M et al. Am J Surg Pathol. 2000;24(7):1016-1019. 40. Centers for Medicare & Medicaid Services manual system. Pub 100-04 Medicare Claims Processing Transmittal 2971. https://www.cms.gov/regulations-and-guidance/guidance/transmittals/downloads/r2971cp.pdf. Accessed May 16, 2022. 41. Centers for Medicare & Medicaid Services. Laboratory date of service policy. https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/ClinicalLabFeeSched/Clinical-Lab-DOS-Policy. Accessed May 16, 2022; **42**. Merker JD et al. *J Clin Oncol*. 2018;36(16):1631-1641. **43**. Rolfo C et al. *J Thorac Oncol*. 2021;16(10):1647-1662. **44**. Rugo HS et al. *J Natl Cancer Inst*. 2021;113(12):1733-1743. **45**. Dang TO et al. *Expert Rev Anticancer Ther.* 2016;16(1):13-20. **46**. Safikhani Z et al. *Nat Commun.* 2017;8(1):1126. 47. Zhang F et al. BMC Genomics. 2016;17(suppl 7):522. 48. Anand K et al. Clin Lung Cancer. 2020;21(5):437-442. 49. PhRMA. Cancer medicines: value in context. https:/phrma.org/-/media/Project/PhRMA/PhRMA-Org/PhRMA-Org/PDF/0-9/2022-cancer-value-in-context-chartpack_012022.pdf. Accessed August 2, 2022. 50. College of American Pathologists. https://www.cap.org/protocols-and-guidelines/cap-guidelines/cap-guideline-principles. Accessed February 18, 2022. 51. Li M et al. J Mol Diagn. 2017;19(1):4-23. 52. ACCC CAP precision medicine: integration of pathology with the cancer care team. https://www.accc-cancer.org/ docs/projects/landscape-of-pathology/pathology-coordinating-reporting.pdf?sfvrsn=fa5ddb9e_2. Accessed March 21, 2022. 53. Brown NA, Elenitoba-Johnson KS. Ann Rev Pathol Mech Dis. 2020;15:97-121. 54. ACCC CAP precision medicine: integration of pathology with the cancer care team. https://www.accc-cancer.org/ America Value Mathematics 2020;15:57-111: 94: Accec CAP precision mediation of pathology with the carter care team. https://www.accec-carter.org/ docs/projects/landscape-of-pathology/pathology-patient-centered-care.pdf?sfvrsn=8173e1cb_2. Accessed March 18, 2022. 55. CAP definition of synoptic reporting. https://documents.cap.org/documents/synoptic_reporting_definition_examples_v4.0.pdf. Accessed March 18, 2022. 56. Valenstein PN. Arch Pathol Lab Med. 2008;132(1):84-94. 57. Roberts MC et al. JCO Precis Oncol. 2021;5:PO.20.00431. 58. Nussinov R et al. PLoS Comput Biol. 2019;15(3):e1006658. 59. The Cancer Genome Atlas Research Network. Nature. 2014;511(7511):543-550. 60. Catalogue of somatic mutations in cancer. https://cancer.sanger.ac.uk/cosmic/about. Accessed August 11, 2022. 61. Friedlaender A et al. Front Oncol. 2021;11:644472. 62. Charo LM et al. JCO Precis Oncol. 2022;6:e2000508. 63. Luchini C et al. Trande Carcer 2020;6(1):272-744 Trends Cancer. 2020:6(9):738-744.

SUMMARY

Biomarker testing is fundamental to breast cancer care and is essential to guiding therapeutic decisions⁸⁵

TRF format and layout vary and can impact biomarker ordering. Professional societies recommend:

- Reducing form variability and complexity^{31,52}
- Ensure use of a common language^{33,51}
- Keeping forms up-to-date²⁴

Pathology reports are critical to ensure correct patient management. These reports should ideally be integrated into the EHR and should be as consolidated, clear, and synoptic as possible⁵²

Knowledge Check that goes with this chapter? Are you interested in learning more about

Precision Medicine?

Do you have the

GO TO OUR WEBSITE!

You'll find knowledge checks, additional resources, a digital version of this and other 🗖 🕹 😹 chapters, and more

www.hcp.novartis.com/precision-medicine

Looking to speak to a Precision Medicine Liaison? Scan this QR code

www.hcp.novartis.com/precision-medicine/contact-us

b NOVARTIS

Novartis Pharmaceuticals Corporation East Hanover, New Jersey 07936-1080